Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Group Theory

Subject Code: 5SC02	2GRT1	Branch: M.Sc. (Mathematics)	
Semester: 2	Date: 12/05/2017	Time: 02:00 To 05:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1			Attempt the Following questions	(07)
		a.	Every finite group of order less than six is abelian. True/False.	(01)
		b.	Define: Index of subgroup of group.	(01)
		c.	Define: Normalizer of element of group.	(01)
		d.	Prove that every cyclic group is an abelian group.	(02)
		e.	If $a^2 = e$ for all element of a group G. Then prove that G is commutative.	(02)
Q-2			Attempt all questions	(14)
	a)		If $G = \{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} / a$ is non zero real number $\}$ then prove that G is group under multiplication.	(05)
	b)		If $a \in G$ is of order <i>n</i> then prove that $a^m = e$ for some integer m if and only if	(05)
	c)		$n \mid m$. If G is finite group of order nand $a \in G$ then prove that there exists a positive integer $r \leq n$ such that $a^r = e$.	(04)
			OR	
Q-2	a)		Attempt all questions If $(G,*)$ be a group and $o(a) = n$ then prove the following (i) $o(a^q) \le o(a)$ for any integer q . (ii) $o(a^{-1}) = o(a)$.	(14) (06)
	b)		Let $G = \{(a, b) a, b \in R, a \neq 0\}$ and $*$ be defined as (a, b) * (c, d) = (ac, bc + d) then prove that G is a group under $*$.	(05)
	c)		If (<i>G</i> ,*) is a group and <i>a</i> , <i>b</i> \in <i>G</i> then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$	(03)

Page **1** of **2**

Q-3	a)		Attempt all questions If <i>H</i> is a subgroup of a finite group <i>G</i> then prove that $o(H) o(G)$.	(14) (06)		
	b)		Prove that a group of prime order is cyclic.	(04)		
	c)		Define: Centre of group <i>G</i> . Prove that Centre of group <i>G</i> is subgroup of <i>G</i> . OR	(04)		
Q-3	a)		If in a group <i>G</i> , $a^5 = e, aba^{-1} = b^2$ for $a, b \in G$ find $o(b)$.	(06)		
	b)		Prove that product of two right cosets is a right coset.	(04)		
	c)		If <i>H</i> and <i>K</i> are normal subgroups of a group <i>G</i> with $H \cap K = \{e\}$ then prove that $kh = hk$ for each $h \in H$ and $k \in K$.	(04)		
~ •			SECTION – II			
Q-4		a.	Attempt the Following questions If $\emptyset: G \to G'$ be a homomorphism with $K_{\emptyset} = \{e\}$ then prove that \emptyset is one – one.	(07) (02)		
		b.	How many generators are there of the cyclic group of order 8?	(02)		
		c.	Define: p - sylow group.	(01)		
		d.	Define: Internal direct product.	(01)		
		e.	Define: Transposition	(01)		
Q-5			Attempt all questions	(14)		
	a)		If $\phi : (G, \cdot) \to (G', *)$ is an onto homomorphism with kernel K then prove that $G \mid K \cong G'$.	(06)		
	b)		Let G be group. For a fixed element g in G, define $\phi : G \to G$ by	(05)		
	c)		$\phi(x) = gxg^{-1}$. Prove that is ϕ an isomorphism of <i>G</i> on to <i>G</i> . Write all the permutations on three symbols 1, 2, 3. Which of these are even permutation?	(03)		
			OR			
Q-5	a)		Let G be a group and suppose G is the internal direct product of $N_1, N_2,, N_n$. Let $T = N_1 \times N_2 \times \times N_n$. Then prove that G and T are isomorphic.	(07)		
	b)		Prove that each permutation $f \in S_n$ can be expressed as a composition of disjoint cycles.	(07)		
Q-6	a)		Attempt all questions Prove that every finite group <i>G</i> is isomorphic to a permutation group.	(14) (07)		
	b)		Suppose $G_1, G_2,, G_n$ are groups. Let $G = G_1 \times G_2 \times \times G_n$. Let $a = (a_1, a_2,, a_n)$ and $b = (b_1, b_2,, b_n) \in G$. The binary operation $*$ defined as $a * b = (a_1b_1, a_2b_2,, a_nb_n)$. Prove that $(G, *)$ is group.	(07)		
			OR			
Q-6	a) b)		State and prove Sylow's theorem. If <i>G</i> is a group then prove that $\mathcal{A}(G)$, the set of all automorphism of <i>G</i> is also a group under the composition of functions.	(07) (07)		

